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Abstract

The expansion of (2D) wavelet functions with respect to Lp(R2) space converging almost ev-
erywhere for 1 < p < ∞ throughout the length of the Lebesgue set points of space functions is
investigated in this research. The convergence is established by assuming somewavelet function
minimal regularity ψj1,j2,k1,k2 under the current description of the wavelet projection operator
known as 2DHard SamplingOperator. Note that the feature of fast decline in 2D is derived here.
Another condition is used, for instance, the wavelet expansion’s boundedness under the Hard
Sampling Operator. The bound (limit) is governed in magnitude with respect to the maximal
equality of the Hardy-Littlewood maximal operator. Some ideas presented in this work to find
a new method to prove the convergence theory for new type of conditional wavelet operator.
Propose some conditions for wavelets functions and there expansion can support the operator
to be convergence. It also perform a comparison with the identity convergent operator is our
method for achieving this convergence.
Keywords: boundedness; convergence; maximal function; rapidly decreasing; wavelet expan-

sion.
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1 Introduction

The wavelet expansions almost everywhere convergence under a novel type of wavelet op-
erator known as Hard Sampling Operator is investigated in this paper. For 1 < p < ∞, these
expansions are employed to further expand the Lp(R2) functions f in 2D. This is accomplished
usingwavelet functions that are quickly diminishing and bounded. Hard SamplingOperator Tλ1,2

gives the f wavelet expansion as determined by the following Formula (1):

Tλ1,2
f(x, y) =

∑
j≥J;{|aj,k|>λ1,2}

∑
k;{|aj,k|>λ1,2}

aj,kψj,k, (1)

where

aj,k =

∫
R

∫
R

f(χ, ζ)ψj,k(χ, ζ)dχdζ, (2)

denotes a coefficient of expansion provided that

|aj,k| > λ1,2,

for j = {(j1, j2) ∈ Z × Z : j1 = J1, ...,∞, j2 = J2, ...,∞}, {k = (k1, k2) ∈ Z × Z}, λ1,2 is a real
number as well as (x, y) ∈ R×R denoting a Lebesgue point of f . Apart from that, the 2Dwavelets
basis functions {ψj,k} = {2j1/22j2/2ψ(2j1 · − k1)ψ(2j2 · − k2)} compose an orthonormal basis with
respect to L2(R2) under the effect of multi-resolution analysis.

The hard sampling operator convergence almost everywhere in Lp norm to f is demonstrated
in this paper, which explores the almost everywhere convergent behavior of 2D wavelet expan-
sion. In this study, any focus is limited to 2D wavelets, which analyses the quickness regarding
the magnitude of wavelet expansions decrement, as well as the boundaries (limits) of wavelet
expansions in 2D. In the following part, we will go through these features in depth.

2 Motivation and Innovative Results of the Work

In this work the problems on the convergence theory of wavelet expansions for the Hard Sam-
pling Wavelet Operator in Lp are investigated for modelling scientific applications spaces with
high-dimension. For improving the performance of Hard Sampling Wavelet Operator and em-
ployingwavelet basis functionswhich defined in theR× R. Using themethods ofmulti-resolution
analysis for wavelets expansions of the rapidly decreasing functions after determining that the
multi-resolution analysis do not cause any loss of information during the analysis. This study
presents expansion analysis of the wavelet basis functions to infinite-level of analysis. for more
obvious whenever increases the number of partial sums’ terms, the terms should be closer and
closer to a certain function f(x, y) (i.e. convergent). This work is completing the ideas of the work
of the [11] by verifying two dimensional rapidly decreasing property for wavelet function which
allows to achieve the almost everywhere convergence. Properties of the two-dimensional version
of the Hard Sampling operator are obtained and applied to establish the proof of the almost every-
where convergence of the wavelet expansions of the rapidly decreasing functions. The bounds for
the Hard Sampling operator is limited in its magnitude by the Hardy-Littlewood maximal opera-
tor. First main result of the work is given in the Theorem 4.1, where the convergence of the Hard
Sampling operator at the points of the Lebesgue of the function being expanded. The important
point in the paper is the inequality (7), where estimation for the two-dimensional wavelet basis
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functions are established. The results of the Theorem 2.3 are describing the behavior of the coeffi-
cients of the expansions of the rapidly decreasing function in termswavelet expansions. The latter
results can be obtained by standard methods of the multiresolution analysis after the estimation
(7) is established. By reference to the results of the Theorem 4.2 and Theorem 4.3 the range for j1
and j2 in Hard Sampling operator are discovered in the Theorem 4.4. Finally using the obtained
estimations the maximal operator of Hard Sampling operator is estimated and the almost every
where convergence is derived from the latter estimation.

3 Related Works

Meyer [8] was the first to develop the wavelet expansion unconditional convergence in the
multi-resolution analysis notion. Following that, numerous scholars investigated the subject of
wavelet expansion convergence. For example, [10] modified non-separable Haar wavelet expan-
sion as a wavelet transform to embed a binary watermark image into a color cover image. In
another works, [4] and [3] used the radial decreasing as well as partial continuous wavelet func-
tions to describe the convergence expansions of Lp(Rn) functions with respect to (1 6 p < ∞)
corresponding to every Lebesgue point of f . In a different study, [16] used regular orthogonal
wavelets to expand the distribution, with the expansion converging pointwise to the distribution
value. When a minimal regularity for ψ is taken into account, the pointwise convergence with
respect to the wavelet projections operator may be achieved on the complete Lebesgue set of f
[15]. Employing the approximation method, [17] converged the wavelet expansions of the L2(R)
function to the mean value of both side limits at a generalized continuous point. Moreover, [2]
employed the characterization of vector-valued Besov spaces function to examine the convergence
property with respect to wavelet expansion that is non-divergence-free as well as divergence-free
wavelet expansion. Furthermore, [5] used wavelet expansions to investigate the pointwise behav-
ior of the Schwartz distributions of numerous variables. The study looked at the characterization
of the quasi asymptotic behavior of distributions at finite points, as well as the relationships with
measuresα−density points. In a differentwork, [13] used a prolate spheroidal wavelet to examine
the pointwise convergence of wavelet expansions of L2(R) functions. In addition, [12]and [11]
looked at how LP functions defined on the S2 and R2 domains converge. By utilizing a spherical
multi-resolution analysis on S2 surface functions, [11] elucidated the pointwise behavior of spher-
ical wavelet expansionwith respect to the spherical wavelet projection operator. Hence, redefining
the projection operator into 2Dwavelet projections operators and expanding the 0-regular wavelet
function with two scaling and shifting parameters, [12] enhanced Tao’s work. To reach conver-
gence, the effort entailed verifying the wavelet function’s 2D fast decreasing property. In addition
to what wasmentioned above, a good approach to the topic of approximationwas noticed in work
of [7], Volterra integro-differential equation solved by applying Shannon approximation. On the
other side, the Galerkin and the Petrov-Galerkin methods had been used to approximate the solu-
tion of nonlinear integral equation of the Urysohn type by work for [9]. After that, [1] produced
another result about convergence theory by proving the strong uniform consistency properties of
the non parametric linear wavelet-based estimators, over compact subsets of Rd, the correspond-
ing rates of convergence were determinate. Liu [6] provided a fast convergent approximation to
the nonlinear hyperbolic Schrödinger equations, the efficient method were presented precision by
calculated the maximum error norm and the experimental rate of convergence.
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4 The Convergent Behavior with Hard Sampling Operator

The findings of the work are presented in this section:
Theorem 4.1. Letψj,k(x1, x2) is a 2-Dwavelet basis functionwith 0-regularity, then for almost everywhere
λ1,2 ∈ R, (x, y) ∈ R × R represents a Lebesgue point of Lp(R2) function f(x, y), for 1 < p < ∞,
j = (j1, j2), k = (k1, k2) and j,k ∈ Z × Z, which yields:

lim
λ1,2→0

Tλ1,2f(x, y) = f(x, y). (3)

Provided that the aforementioned circumstances are met, we now have

1.

|ψj,k(x, y)| ≤
σj1σj2cN
D(j,k)N

, (4)

D(j,k) =
[
1 +

∣∣∣∣2j1x− 2j2y
∣∣− |k1 − k2|∣∣].

2.

|aj,k| ≤
σ−j1σ−j2cNMf(x, y)

D(j,k)N
. (5)

3.

sup
λ1,2

∣∣Tλ1,2
f(x, y)

∣∣ ≤ cNMf(x, y) (6)

where σj1 = 2
j1/2, σj2 = 2

j2/2, σ−j1 = 2
−j1/2 and σ−j2 = 2

−j2/2.
Proof: The next subsections explore and analyze all of the above conditions in order to establish this theorem.

4.1 Rapidly Decreasing Property

The given Theorem (4.2) derives the fast diminishing property of 2D wavelet function, thus
developing the first requirement of Theorem (4.1):
Theorem 4.2. Let ψj,k(x, y) is a 2-D wavelet basis function under 0-regularity with respect to L2(R2)
space in which j = (j1, j2), k = (k1, k2) as well as j,k ∈ Z × Z. Therefore

|ψj,k(x, y)| 6
σj1σj2cN

[1 + |α− β|]N
, (7)

σj1 = 2
j1/2, σj2 = 2

j2/2, α =
∣∣2j1x− 2j2y

∣∣, β = |k1 − k2| in which N > 0 as well as cN represents
constant.

Proof. Due to the fact that ψj,k(x, y) is specified in 2D, we now have

ψj,k(x, y) = ψj1,k1(x)ψj2,k2(y)

= σj1σj2ψ(xj1)ψ(yj2),

686



R. Shamsah et al. Malaysian J. Math. Sci. 16(4): 683–695 (2022) 683 - 695

xj1 = 2j1x − k1, yj2 = 2j2y − k2. Because the set of wavelet basis functions {ψj,k}(x) ∈ L2(Rn) is
regarded as r-regular functions for (r ∈ N), if ψ is chosen with the manners of:

|ψj,k(x)| ≤
σjcn

[1 + |xj |]n
, (8)

σj = 2
j/2, xj = 2jx− k. Therefore, ψj,k(x, y) resembles a 0-regular wavelet, and we may use the

Inequality (8) given by:
|ψj1,k1(x)| 6

σj1cN1

[1 + |xj1 |]
N1
,

|ψj2,k2(y)| 6
σj2cN2

[1 + |yj2 |]
N2
,

with respect to j,k ∈ Z2 and N1, N2 > 0. We now have

|ψj1,k1(x)ψj2,k2(y)| ≤
σj1σj2cN1

cN2

[1 + |xj1 |]
N1 [1 + |yj2 |]

N2

≤ σj1σj2cN

[1 + |xj1 |+ |yj2 |+ |xj1 | |yj2 |]
N
, (9)

in which N = min{N1, N2}.
To elaborate on this, we see that,

1

(1 + t)
N1
× 1

(1 + z)
N2
6

{
1

[(1+t)(1+z)]N1
N1 < N2

1
[(1+t)(1+z)]N2

N2 < N1.

Thus,
1

(1 + t)
N1
× 1

(1 + z)
N2
6

1

[(1 + t)(1 + z)]
N
,

in which N = min{N1, N2} as well as for all t, z ∈ Z+.
Suppose by taking the term[

1 +
∣∣2j1x− k1∣∣+ ∣∣2j2y − k2∣∣+ ∣∣2j1x− k1∣∣ ∣∣2j2y − k2∣∣]

> 1 +
∣∣2j1x− k1 + k2 − 2j2y

∣∣+ ∣∣2j1x− k1∣∣ ∣∣2j2y − k2∣∣
= 1 +

∣∣(2j1x− 2j2y
)
− (k1 − k2)

∣∣+ ∣∣2j1x− k1∣∣ ∣∣2j2y − k2∣∣
> 1 +

∣∣∣∣2j1x− 2j2y
∣∣− |k1 − k2|∣∣ .

Therefore, formula (9) becomes

|ψj,k(x, y)| = |ψj1,k1(x)ψj2,k2(y)| 6
σj1σj2cN

[1 + |α− β|]N
.

�

This completes the proof of Theorem (4.2).

Let us consider
D(j,k) = [1 + |α− β|].

We obtain
|ψj,k(x, y)| ≤

σj1σj2cN
D(j,k)N

.
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4.2 Boundedness of Wavelet Expansion

If the following Theorem (4.3) is proven to prove the wavelet expansion boundedness with
respect to a Hard Sampling Operator, the second condition of Theorem (4.1) is true.
Theorem 4.3. Let ψj,k(x1, x2) denotes a 2-D wavelet basis function with 0-regularity with respect to
wavelet expansion, then for almost everywhere (x, y) ∈ R × R represents a Lebesgue point of f(x, y) ∈
Lp(R2), for 1 < p < ∞, j = (j1, j2), k = (k1, k2), j,k ∈ Z × Z, N > 0, cN denotes a constant whereas
M resembles a maximal function operator of f(x, y). Therefore, for σ−j1 = 2

−j1/2 and σ−j2 = 2
−j2/2

|aj,k| ≤ σj1σj2cN
Mf(x1, x2)

D(j,k)N
.

Proof. Based on the Equation (2)

|aj,k| ≤
∫
R

∫
R

|ψj,k(x, y)| |f(x, y)| dxdy.

We can implement the Dyadic interval requirement using the compact supported property for the
wavelet function, which is specified by

Ij,k = [2−jk, 2−j (k + 1)), (10)

with respect to each j, k ∈ Z. A general index set for the wavelet basis functions is {Ij,k}, which is
made up of these sub intervals collection. Applying Equation(7) in Theorem 4.2 yields

∫
R

∫
R

|ψj,k(x, y)|dxdy =

2−j1 (k1+1)∫
2−j1k1

2−j2 (k2+1)∫
2−j2k2

σj1σj2cN1cN2

[1 + |α− β|]N
dxdy,

where σj1 = 2
j1/2 , σj2 = 2

j2/2, α =
∣∣2j1x− 2j2y

∣∣ and β = |k1 − k2|.
Suppose D(j,k) = int [1 + |α− β|] .
Therefore, we have

∫
R

∫
R

|ψj,k(x, y)|dxdy =

2−j1 (k1+1)∫
2−j1k1

2−j2 (k2+1)∫
2−j2k2

σj1σj2cN1cN2

D(j,k)
N

dxdy.

Hence,

|ψj,k(x, y)| ≤
σj1σj2cN
D(j,k)N

.

Thus,

|aj,k| ≤
σj1σj2cN

∫
R

∫
R

|f(x, y)|dxdy

D(j,k)N
,

|aj,k| ≤
σj1σj2cNMf(x, y)

D(j,k)N
,

in which cN = cN1
cN2

.
The proof has been completed �
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To locate the finest values for j1 and j2 in which the significant terms in the Tλ1,2
summation

may be shown, we then apply this to Theorem (4.4).
Theorem 4.4. Let ψj,k(x1, x2) denotes a wavelet basis function under 0-regularity with respect to wavelet
expansion

∑
j

∑
k

aj,k, then the two scales j1 and j2 of Hard Sampling Operator in Equation (1) are varied

by:

J1 ≤ j1 < J1 + ℵ1,
J2 ≤ j2 < J2 + ℵ2,

where ℵ1 = cN3
− 2N1log2D(j1, k1), ℵ2 = cN4

− 2N2log2D(j2, k2) with having

|aj,k| > λ1,2, (11)

for λ1,2 is a real number , (x, y) ∈ R×R denotes a Lebesgue point ofLp(R2) function f(x, y) for 1 < p <∞
almost everywhere, j = {(j1, j2) : j1 ≥ J1, j2 ≥ J2}, k = (k1, k2) with j,k ∈ Z× Z, [J1 + ℵ1] ∈ Z,
[J2 + ℵ2] ∈ Z, cN3

, cN4
resemble constants and N1, N2 > 0.

Proof. We now employ Inequality (5) with 1D wavelet function ψj1,k1(x) in Theorem 4.1, which
yields

|aj1,k1 | 6
σ−j1cN1

Mf(x)

D(j1, k1)N1
,

and by implementing it with another 1D wavelet function ψj2,k2(y), we obtain

|aj2,k2 | 6
σ−j2cN2Mf(y)

D(j2, k2)N2
.

We now take into account λ1 ≈ 2
−J1/2Mf(x) and λ2 ≈ 2

−J2/2Mf(y). We replace Inequality (5)
into Inequality (11) with 1D after employing each of the Inequalities (5) and (11), we have

2
−J1/2Mf(x) <

σ−j1cN1Mf(x)

D(j1, k1)N1
,

as well as
2
−J2/2Mf(y) <

σ−j2cN2
Mf(y)

D(j2, k2)−N2
.

This results into
2
−J1/2 <

σ−j1cN1

D(j1, k1)N1
; (a)

2
−J2/2 <

σ−j2cN2

D(j2, k2)N2
. (b)

Using log2 with respect to both sides of the terms (a) and (b), we obtain

log22
−J1/2 < log2σ−j1 + log2cN1

−N1log2D(j1, k1);

⇒ −J1
2

<
−j1
2

+ log2cN1
−N1log2D(j1, k1);

⇒ j1 < J1 + cN3
− 2N1log2D(j1, k1),

and this is lead to
j1 < J1 + ℵ1
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as well as

log22
−J2/2 < log 2σ−j2 + log2cN2

−N2log2D(j2, k2);

⇒ −J2
2

<
−j2
2

+ log2cN2
−N2log2D(j2, k2);

⇒ j2 < J2 + cN4 − 2N2log2D(j2, k2),

that is lead to
j2 < J2 + ℵ2

in which cN1
, cN2

, cN3
and cN4

resemble constants. Therefore, the finest scales j1 as well as j2 are
in the range given below

J1 ≤ j1 < J1 + ℵ1.
J2 ≤ j2 < J2 + ℵ2.

�

4.3 The limitation of Hard Sampling Operator

To limit the operatorTλ1,2
, we show that themaximal functiondescribed in theHardy-Littlewood

maximal operatorM may be used to limit its magnitude, such as

Mf(x, y) = sup
r1,r2>0

|Ar1,r2 (f) (x, y)| ,

in which Ar1,r2 denotes a maximal function given by

Ar1,r2 (f) (x, y) =
1

|B(x, y, r1, r2)|

∫
B(x,r1)

∫
B(y,r2)

f(y1, y2)dy1dy2.

Hence, the B ball measure as follows

|B(x, y, r1, r2)| =
√
x2

1
+ x22 ≤ 2r2,

for (x1, x2) ∈ R × R and the point (0, 0) is a center. To obtain further information, we direct the
readers to ([14]).
Remark 4.1. Generally, it is possible to bound

∥∥Tλ1,2f(x, y)− f(x, y)
∥∥
Lp provided the regularities of f

and wavelet functions are determined.∥∥Tλ1,2f(x, y)− f(x, y)
∥∥
Lp =∥∥(I − Tλ1,2

)f(x, y)
∥∥
Lp .

There appears a constant cN in which I is an identity operator when both f and the wavelet function ψj,k

possess N continuous derivatives∥∥(I − Tλ1,2
)f(x, y)

∥∥
Lp ≤

cN
2Nj
‖f(x, y)‖Lp .

As a result, we may utilize the aforementioned facts to prove the given theorem as the third
condition of the Theorem (4.1):
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Theorem 4.5. Let ψj,k(x, y) denotes a 0-regular 2-D wavelet basis function with respect to wavelet expan-
sion, hence, the Hard Sampling Operator given by

Tλ1,2
f(x, y) =

∑
|aj,k|>λ1,2

∑
j

∑
k

aj,kψj,k,

possesses

sup
λ1,2

∣∣Tλ1,2
f(x1, x2)

∣∣ ≤ cNMf(x1, x2).

With respect to λ1,2 ∈ R × R, (x1, x2) ∈ R × R denotes a Lebesgue point of Lp(R2) function f(x1, x2),
for 1 < p <∞, j = {(j1, j2) : j1 ≥ J1, j2 ≥ J2}, k = (k1, k2), as well as j,k ∈ Z × Z.
Proof:
Assuming the convergent Wavelet Projection Operator in [12], we can consider that the Wavelet Projection
Operator PJ is written in the following equation

PJf(x, y) =
∑
j<J

∑
k

aj,kψj,k, (12)

converges almost everywhere with respect to (x, y) ∈ R2 a Lebesgue point of f(x, y) as well as j = {(j1, j2) :
j1 < J1, j2 < J2}, k = (k1, k2) with j,k ∈ Z × Z. We now separate the terms in Equation (1) as well as
Equation (12) as written below:

Tλ1,2f(x, y) =∑
j<J;{|aj,k|>λ1,2}

∑
k;{|aj,k|>λ1,2}

aj,kψj,k +
∑

j≥J;{|aj,k|>λ1,2}

∑
k;{|aj,k|>λ1,2}

aj,kψj,k (13)

PJf(x, y) =∑
j<J;{|aj,k|≤λ1,2}

∑
k;{|aj,k|≤λ1,2}

aj,kψj,k +
∑

j<J;{|aj,k|>λ1,2}

∑
k;{|aj,k|>λ1,2}

aj,kψj,k. (14)

By taking the term ∣∣Tλ1,2
f(x, y)− PJf(x, y)

∣∣ ,
and replacing Equations (13) as well as (14), it yields∣∣Tλ1,2

f(x, y)− PJf(x, y)
∣∣ =∣∣∣∣∣∣

∑
j>J;{|aj,k|>λ1,2}

∑
k;{|aj,k|>λ1,2}

aj,kψj,k −
∑

j<J;{|aj,k|6λ1,2}

∑
k;{|aj,k|6λ1,2}

aj,kψj,k

∣∣∣∣∣∣
≤

∑
j≥J;{|aj,k|>λ1,2}

∑
k;{|aj,k|>λ1,2}

|aj,kψj,k|+
∑

j<J;{|aj,k|≤λ1,2}

∑
k;{|aj,k|≤λ1,2}

|aj,k| |ψj,k|

where |aj,k| > λ1,2, j1 and j2 values range as follows

J1 ≤ j1 < J1 + ℵ1.
J2 ≤ j2 < J2 + ℵ2.

This results follows as∣∣Tλ1,2
f(x, y)− PJf(x, y)

∣∣ ≤ ∑
J1≤j1<J1+ℵ1
J2≤j2<J2+ℵ2

∑
k

|aj,kψj,k|+
∑
j<J

∑
k

λ1,2 |ψj,k|.
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Note that there exist an integer D(j1, k1) = d1 as well as D(j2, k2) = d2 for d1 ≥ 1, d2 ≥ 1 and
d1,2 = d1× d2 for every j1 and j2, as well as for every integer k1 and k2, we can deduce from Equation (4)
and Equation (5) that

|ψj,k(x, y)| ≤
σj1σj2cN
D(j,k)N

.

|aj,kψj,k| ≤
cNMf(x, y)

D(j,k)N
.

This now yields ∣∣Tλ1,2
f(x, y)− PJf(x, y)

∣∣ 6∑
J1≤j1<J1+ℵ1
J2≤j2<J2+ℵ2

∞∑
d1,2=1

cNMf(x, y)

dN1,2
+
∑
j1<J1

∑
j2<J2

∞∑
d1,2=1

σj1σj2λ1,2cN
dN1,2

. (15)

Several estimations are needed to further clarify the Formula (15) as follows:

First: Calculate the term
∞∑

d1,2=1

d−N1,2 , for N > 1.

Assume t = d1,2 = d1× d2. Hence, by employing integral test to locate the behavior of series, we get
∞∫
1

t−Ndt = lim
v→∞

v∫
1

t−Ndt

= lim
v→∞

(
(v−N+1)(−N + 1)−1 − (−N + 1)−1

)
= (N − 1)−1 <∞,

which converges with respect to N > 1.

Therefore,

sup
d1,2

 ∞∑
d1,2=1

d−N1,2

 = 1.

Second: Estimate the term
∑

0≤j1≤J1

∑
0≤j2≤J2

2
j1/22

j2/2.

The following description will help us estimate the series:

Let 2 1
2 = q, and

J1∑
j1=0

2
j1/2 = S = 1 + q + q2 + · · ·+ qJ1

qS = q + q2 + · · ·+ qJ1+1,
qS − S = qJ1+1 − 1,
S(q − 1) = qJ1+1 − 1,
S(q − 1)(q + 1) = (qJ1+1 − 1)(q + 1),
S = qJ1+2 + qJ1+1 − q − 1,
6 qJ1+2 + qJ1+2 = 2qJ1+2.

Hence,
J1∑
j1=0

2
j1/2 6 42

J1/2. Likewise, we acquire
J2∑
j2=0

2
j2/2 6 42

J2/2.
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Third: Calculate the terms
∑

J16j1<J1+ℵ1
1 and

∑
J26j2<J2+ℵ2

1,

ℵ1 = cN3 − 2N1log2d1 and ℵ2 = cN4 − 2N2log2d2.
To calculate the series by integral test, we discover that∑
J6j<J+cN−2N log2d

1 =
J+cN−2N log2d∫

J

dj = cN − 2N log2d <∞.

Note that

J+cN−2N log d∑
j=J

1 = 1J + 1J+1 + 1J+2 + ...+ 1J+cN−2N log d

sup
j1

 ∑
J16j1<J1+cN3

−2N1log2d1

1

 = 1J1+cN3
−2N1log2d1 = 1,

and

sup
j2

 ∑
J26j2<J2+cN4

−2N2log2d2

1

 = 1J2+cN4
−2N2log2d2 = 1.

We now replace the λ1,2 value with the First, Second as well as Third estimations in Equation (15), which
yields

∑
J1≤j1<J1+ℵ1
J2≤j2<J2+ℵ2

∞∑
d1,2=1

cNMf(x, y)

dN1,2
+
∑
j1<J1
j2<J2

∞∑
d1,2=1

σj1σj2λ1,2cN
dN1,2

6
∑

J1≤j1<J1+ℵ1
J2≤j2<J2+ℵ2

∞∑
d1,2=1

cNMf(x, y)

dN1,2

+

∞∑
d1,2=1

σJ1σJ22
4σ−J1σ−J2cNMf(x, y)

dN1,2

6
∑

J1≤j1<J1+ℵ1
J2≤j2<J2+ℵ2

∞∑
d1,2=1

cNMf(x, y)

dN1,2
+

∞∑
d1,2=1

cN24Mf(x, y)

dN1,2
.

Thus,
sup

∣∣Tλ1,2
f(x, y)− PJf(x, y)

∣∣ =
sup(

∑
J1≤j1<J1+ℵ1
J2≤j2<J2+ℵ2

∞∑
d1,2=1

cNMf(x, y)

dN1,2
+

∞∑
d1,2=1

cNcMMf(x, y)

dN1,2
)

= cNMf(x, y) + cMNMf(x, y).

Therefore,
sup
λ1,2

∣∣Tλ1,2
f(x, y)

∣∣ ≤ cMf(x, y),

where c = cN + cMN and c, cN , cM , cMN are constants. �
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5 Conclusion

This paper establishes the convergence of wavelet expansions for Lp(R2) functions. By vali-
dating several properties, the convergence was studied. The conclusion is outlined as follows:

• By validating the fast diminishing property of a 2D wavelet function, the boundaries of the
wavelet function can be determined;

• The 2D wavelet expansion bounds under Hard Sampling Operator; as well as
• The Hard Sampling Operator bounds (limits) is obtained by implementing maximal in-

equality of Hardy-Littlewood maximal operator.

The results of this research may be used to establish the convergence of 2D Hard Sampling
Operators practically anywhere using strategies such as

• Applying multi-resolution analysis;
• Employing holder equality;
• The identity operator bounded property;
• The Hardy-Littlewood maximal operator’s bounded condition.
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